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Model-Based Referenceless Quality Metric
of 3D Synthesized Images Using

Local Image Description
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Abstract— New challenges have been brought out along with
the emerging of 3D-related technologies, such as virtual reality,
augmented reality (AR), and mixed reality. Free viewpoint
video (FVV), due to its applications in remote surveillance,
remote education, and so on, based on the flexible selection of
direction and viewpoint, has been perceived as the development
direction of next-generation video technologies and has drawn
a wide range of researchers’ attention. Since FVV images are
synthesized via a depth image-based rendering (DIBR) procedure
in the “blind” environment (without reference images), a reliable
real-time blind quality evaluation and monitoring system is
urgently required. But existing assessment metrics do not render
human judgments faithfully mainly because geometric distortions
are generated by DIBR. To this end, this paper proposes a
novel referenceless quality metric of DIBR-synthesized images
using the autoregression (AR)-based local image description.
It was found that, after the AR prediction, the reconstructed
error between a DIBR-synthesized image and its AR-predicted
image can accurately capture the geometry distortion. The visual
saliency is then leveraged to modify the proposed blind quality
metric to a sizable margin. Experiments validate the superiority
of our no-reference quality method as compared with prevailing
full-, reduced-, and no-reference models.

Index Terms— Quality assessment, no-reference, depth image-
based rendering, image description, autoregression, saliency.

I. INTRODUCTION

RECENTLY, Free Viewpoint Videos (FVVs) and
3D television have received considerable attention

owing to its widespread applications in several areas such as
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remote surveillance, medical applications, remote education,
entertainment, and more. In FVVs, it is required to generate
new viewpoints with the help of neighboring multiple views
and these new viewpoints are generated using the Depth-
Image-Based-Rendering (DIBR) techniques, which allows the
rendering of an entirely new representation of the scene and
thereby saves large cost and complexity of camera set up [1].
Typically, there include distortions in these synthesized new
views, especially the geometric distortion, which has different
characteristics compared with the distortions that occur in
natural images [2]. A poor DIBR-synthesized view may
create annoying artifacts in the whole FVVs, but current
solutions fail in accurately capturing those artifacts. With this
concern, it is desired to conduct more elaborately subjective
assessment and have an efficient and effective objective
assessment metric to judge the quality of DIBR-synthesized
views [1].

In last few decades, many Image Quality Assess-
ment (IQA) metrics were devised in the literature for nat-
ural images. IQA metrics can be divided into three classes,
namely Full-Reference (FR), Reduced-Reference (RR) and
No-Reference (NR) or blind. In these three categories, com-
plete, partial and no information of the reference image is
required. Such as, Wang et al. proposed an FR IQA model
called Structural SIMilarity (SSIM) [3] based on the lumi-
nance, contrast and structural similarity between a distorted
image and its reference image. Using the SSIM as the bed-
stone, Wang et al. further came up with the Information
Weighted SSIM (IW-SSIM) metric with a weighting strategy,
which is designed based on the statistical information theory
and the natural scene statistics (NSS) model [4]. In the same
line, Gu et al. recently improved the SSIM with a valid pooling
scheme and proposed the Analysis of Distortion Distribution-
based SSIM (ADD-SSIM) metric [5].

During the past some years, researchers have realized the
strong relationship between free energy principle and quality
assessment. Wu et al. [6], Zhai et al. [7], and Gu et al. [8]
deployed this principle in the design of FR, RR and NR IQA
methods, respectively. Generally speaking, the free energy
principle reveals that the human vision separates an image
into two parts, which have different impacts on the overall
perception of visual quality. According to typical low-level
features, e.g. image gradient, Zhang et al. [9], Gu et al. [10],
and Gu et al. [11] proposed highly effective FR IQA methods
on commonly encountered distortion categories. In practice,
the development of high-performance FR models is benefit
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Fig. 1. Quality perception by the human visual system. The left two images are two DIBR-synthesized images respectively under weak and strong geometry
distortion corruption. The DIBR-synthesized image with weak geometry distortion is processed by filling holes based on inpainting techniques. Via the human
visual system (middle), the left DIBR-synthesized images can be classified into geometry distortion and non-geometry distortion regions, as illustrated in the
right two images. We label these two regions with different colors.

for devising reliable blind quality metrics. Instead of human
ratings, Gu et al. [12] first used the quality scores computed
by FR models to label a large number of training samples, and
then used the labelled training samples to learn the features
and derive the NR metric. The blind IQA models developed
based on this strategy can better avoid the overfitting problem
introduced in training the features.

Several recent studies were conducted to analyze the sta-
tistical characteristics of natural images. Representative works
are [13]–[15]. Besides these, the Natural Image Quality Evalu-
ator (NIQE) [16] and Integrated Local NIQE (IL-NIQE) [17],
which are free of learning and human scored images, have
aroused more attention. These two NR metrics estimate the
distances of a question image and a group of natural images
in different angles, e.g. the statistics of mean subtracted
contrast normalized (MSCN) coefficients, image gradient, log-
gabor filter responses, etc, to predict the visual quality of the
question image. These two metrics were proved to perform
very efficiently for capturing the main occurring distortions in
natural images and consequently yielding the faithful quality
measures of natural images. Besides, some special IQA studies
were concerned in recent works, including DIBR-synthesized
images [2], multiple distortions [18], [19], foggy images [20],
contrast distortions [21], tone mapping [22], [23], stereoscopic
images [24], screen content images [25], etc.

Whether for typical distortions or for particular distortions
as mentioned above, well-established NR metrics have been
developed except the problem of DIBR-synthesized IQA.
In reality, via extensive experiments, we found that FR models,
even though specifically designed for judging the quality of
DIBR-synthesized images, are unable to deliver high perfor-
mance. Aiming at this, Bosc et al. [2] made the first attempt
to explore why IQA methods based on existing theories and
models fail on DIBR-synthesized views, and in the meantime
pointed out the necessity of new IQA algorithms for DIBR-
synthesized views. Such as Conze et al. [26] devised an
SSIM-based VSQA metric, in which the SSIM model is
modulated with the orientation, texture and contrast backed
weighting maps. Battisti et al. [27] proposed an approach
based on the comparison of statistical features extracted from
wavelet subbands of original and distorted DIBR-synthesized
views. In this approach a registration step is included
to insure shifting-resilience before features comparison.
Sandić-Stanković et al. deployed morphological wavelet
decomposition for the quality assessment of DIBR-synthesized
views and named it MW-PSNR [28]. Likewise, the same
authors devised an IQA model by replacing the morphological

wavelet decomposition with the morphological pyramid
decomposition, MP-PSNR, for better performance [29], [30].
Lately, Sandić-Stanković et al. further proposed MP-PSNR-
reduc by modifying MP-PSNR to attain larger perfor-
mance and faster calculation [31]. Although these specifically
designed algorithms implement better than the algorithms
designed for typical distortions, their performance is still not
up to the mark.

In present IQA metrics, we observe two important issues
highly related to the DIBR-synthesized IQA. First, the
IQA algorithms designed for natural images cannot capture
the geometric distortion that is the prevailing artifact appearing
in DIBR-synthesized images. Second, existing IQA meth-
ods proposed for DIBR-synthesized views in the literature,
even if only a few, were all based on the entire reference
image; that is, no NR IQA models has been developed yet.
It needs to stress that, in real application scenarios, refer-
ence DIBR-synthesized image is not accessible, so NR IQA
metrics have much higher values than FR methods. This is
why we focus our attention on the quality assessment of
DIBR-synthesized images without original references. The
main contribution of this paper is to devise an effective
blind IQA algorithm using the newly developed NSS model.
Based on autoregression (AR)-based local image descrip-
tion, the NSS model suits the characteristics of the
DIBR-synthesized images and is able to capture the geometric
distortions in DIBR-synthesized views. We called the proposed
metric “AR-plus thresholding” (APT). The performance of the
proposed APT algorithm is validated on the DIBR-synthesized
image database and experiments illustrate that our blind
APT achieves the best result beyond state-of-the-art FR, RR
and NR IQA appraoches.

The remainder of the paper is organized below. Section II
briefly analyzes the issues occurred in the existing
IQA models for assessing the quality of DIBR-synthesized
images and introduces the proposed new NSS model and
NR APT metric. Experiments are performed on the
IRCCyN/IVC database [2] to validate the superiority of our
method than state-of-the-art competitors. Concluding remarks
are given in Section IV.

II. PROPOSED ALGORITHM

In this work, we propose a referenceless quality assessment
metric for DIBR-synthesized images using the local AR mod-
eling followed by the thresholding. The key problem, which
highly degrades the quality of DIBR-synthesized images,
is the geometry distortion that usually introduces a remarkable
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Fig. 2. Comparison of NSS models for DIBR-synthesized images:
(a)-(e) five DIBR-synthesized images which have quite different quality scores
and are associated to the same scene; (f) the NSS model used in [15]; (g) the
NSS model used in [8].

destruction of naturalness attribute of an image. As shown
in Fig. 1, the human visual system (HVS) can effortlessly
and faithfully separate the geometry distortion regions from
non-geometry distortion regions in a DIBR-synthesized image.
The left image is a typical DIBR-synthesized image under
strong geometry distortion corruption. Via the HVS, the left
DIBR-synthesized image can be classified into geometry dis-
tortion and non-geometry distortion regions, as illustrated in
the right image in Fig. 1. We label these two regions with red
and blue colors, respectively, for readers’ conveniences.

To address the above-described issue, a natural way is to
straightforwardly take current NSS models into consideration.
Unfortunately, these NSS models were developed to capture
the structural distortion in natural images and cannot capture
the geometric distortion. In order to give more insight about
these arguments, in our research, two typical NSS models
in [8] and [15] are applied to model DIBR-synthesized images.
In Figs. 2(a)-(e), five DIBR-synthesized images that are chosen
from the IRCCyN/IVC database [2] are presented. These
five DIBR synthesized images have quite different quality
scores. Fig. 2(f) shows the statistic histogram of MSCN
coefficients deployed in [15]. This NSS model reveals that the
histogram of MSCN coefficients of a natural image exhibits
a Gaussian-like distribution, which will be destroyed by the
addition of distortions. For example, Gaussian blur distortion,
reshapes the distribution of MSCN coefficients towards a
Laplacian distribution. One can observe that these five his-
tograms are quite close to each other; in other words, this
NSS model cannot be used to distinguish the quality of these
five DIBR-synthesized images.

The results derived by exploiting the NSS model in [8]
on DIBR-synthesized images are illustrated in Fig. 2(g).
This regulation suggests that, for natural images, there exists
an approximated linear relationship between their structural
degradation measures and free energy entropy, as shown using
the black dash line in Fig. 2(g). With the increment of
distortions, the point of structural degradation measures and
free energy entropy values will be deviated from that black
line. This NSS model associated to five DIBR-synthesized

images is shown in Fig. 2(g) with five different colored stars
and one can see that these stars are located quite near. This
experiment implies that this NSS model cannot distinguish the
DIBR-synthesized images of different quality scores. That is
to say, this NSS model is still incapable of reliably assessing
the quality of DIBR-synthesized views.

To this aim, we consider introducing the concept of local
image similarity, which indicates that, in a natural image,
the correlation between one pixel and its neighborhood is
quite akin to those of other adjacent pixels in a local region.
In this work we use the classical AR operator to describe the
local image similarity of a given DIBR-synthesized image,
due to its good attribute of invariance to object transformations
such as translation, rotation, scaling, etc. The other local-based
operators such as bilateral and non-local means filter may be
also employed to describe the local image similarity.

In previous researches of psychophysics and computational
neuroscience, a widely acknowledged viewpoint of biological
perceptual systems is that the natural environment modulates
the visual apparatus to be highly adapted to it and to have
evolved to the most efficient manner towards extracting visual
information from it [32], [33]. A recently revealed human brain
theory, free energy principle, can be perceived as one part of
the evolved visual apparatus stated above. Simply speaking,
the free energy principle synthesizes many prevailing brain
theories about biological and physical sciences, and unveils
that the internal generative mechanism in brain governs the
human cognition process [34]. This mechanism points out that
the brain deploys a constructive manner to separate a given
image into orderly parts and disorderly parts, in order for
the follow-up image perception and analysis. Through a series
of analyses provided in [35], the process of minimizing free
energy approximates to predictive coding and it can be well
simulated based on the AR model towards quality assessment
and saliency detection [8], [36]. The aforementioned analyses
also promote the choice of AR operator for local image
description.

In this work a local AR model is used for image analysis.
Autocorrelation, also known as serial correlation, is the cor-
relation of a signal with itself. For one specific pixel in an
image I , we denote its location index as i and its value as xi ,
and accordingly construct a relationship between this pixel and
its neighborhood:

xi = �θ(xi )s + di (1)

where �θ(xi ) defines a neighborhood vector which includes
its surrounding θ pixels in the local

√
θ + 1 × √

θ + 1
patch. While s = (s1, s2, . . . , sθ )

T constitutes a vector of
AR parameters to be determined and di represents the error
difference between the current pixel value and its correspond-
ing AR prediction. In the proposed algorithm, we merely take
account of the most adjacent 8 pixels next to the present pixel.
Of course, more adjacent pixels can be used to build a more
complicated relationship. From experiments, it was found that
enlarging the local patch to introduce more pixels must cause
implementation cost largely increased, but cannot lead to
definite gain in the performance. With this view, we assign
the parameter θ = 8. Apparently, the parameter θ affects the
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Fig. 3. Illustration of how to implement the local AR model.

autocorrelation since the autocorrelation of natural images is
local and it will be not local anymore with θ increased. In the
next section, we particularly analyze the influence of θ on the
performance of the APT metric.

Our next concern is how to determine the AR parameters.
In order to estimate the reliable vector of AR parameters,
we first represent the linear system in a matrix way:

ŝ = arg min
s

‖x − Xs‖2 (2)

where x = (xi,1, xi,2, . . . , xi,φ )T , and X( j, :) = �θ(xi, j ),
where j = {1, 2, . . . , φ}. Next we solve the linear system
in equation (2) via the least square method and infer the best
estimation of the vector of AR parameters to be

ŝ = (XT X)−1XT x. (3)

Note that we set φ = 48 based on the assumption of wide
sense stationarity in a local patch and validity of principle of
“geometric duality”. Specifically, we hypothesize that the rela-
tionship that is built upon the current pixel using equation (1)
also exists for adjacent 48 pixels in the local 7×7 patch. Except
the present pixel, we make use of the information of sur-
rounding 48 pixels to ascertain the relationship, that is the
best estimation of the AR coefficient vector ŝ yielded with
equation (3). In addition, advanced optimization technologies,
such as simulated annealing method and genetic algorithm,
might be considered in the future work for better prediction
of pixels.

For the readers’ conveniences, we use a schematic diagram
to help to illustrate how to implement the local AR model,
as shown in Fig. 3. Let us see this figure from the left to right.
In the first subfigure, each small block means a pixel, and the
middle 49 grey small blocks constitute the local 7 × 7 patch.
The center red small block refers to the current pixel to be
processed. It and its adjacent 8 blue small blocks constitute
the local

√
θ + 1×√

θ + 1 patch, namely the local 3×3 patch
because of θ = 8. In the second subfigure, the golden small
block is close to the center red small block, within the range
of the local 7 × 7 patch, and it and its surrounding 8 green
small blocks constitute a local patch with the same size of
the middle 3 × 3 patch in the first subfigure. The third to last
subfigures provide other 47 conditions.

Basically speaking, the AR predicted image can be thought
of as the orderly part, while the absolute value of the error
difference map between the input image and its associated
AR-based predicted image, i.e. |di |, is perceived as the dis-
orderly part. For natural images or natural image patches,
the AR-model can efficiently clarify the each type of con-
tents (i.e, smooth, edge and texture) and consequently, values
in the error map are always very small. In Fig. 4(a), we have
shown three typical natural image patches. Smooth, textural

Fig. 4. Comparison of natural image patches and geometry distorted
patch: (a) a typical DIBR-synthesized distorted image containing labelled
smooth, edge, textural and geometry distorted patches; (b)-(e) histograms of
error difference of the labelled four patches above, where NNP means the
normalized number of pixels.

and edge patches are labelled using the red, green and orange
boxes, respectively. We have also shown their corresponding
error maps’ histograms in Figs. 4(b)-(d). As can be viewed,
these three histograms have very similar distributions, in which
the majority of values are zero and the few non-zero values are
still less than 20. According to the observation above, we are
able to derive the subsequent two conclusions.

1) The disorderly part always exists in the natural images
and the magnitude of the disorder part depends on the
characteristics of patches, e.g. smooth, edge or texture.

2) The values in the error map are zero or small and
typically these values are not greater than 20 in most
conditions for DIBR-synthesized images.

It is also interesting to observe that the second conclusion
indirectly reflects the good ability of the AR predictor used
for local image description, since the values in the error map
are usually small.

On the other hand, very different results were found when
the AR modeling is applied to a patch which has geometric
distortions. An example is shown in Fig. 4 to give more insight
about these different results. In Fig. 4(a), we label a blue patch
that includes a typical geometry distortion region. Likewise,
we calculate the error difference of this patch and moreover
plot its histogram, as illustrated in Fig. 4(e). One can see from
the histogram that the AR modeling cannot effectively predict
the regions with geometrical distortion and consequently,
it includes many big values of error difference, few of which
are even greater than 100 (as marked with red color). This
observation reveals that the used AR operator is capable of
highlighting the geometry distortions. Actually, in theoretical,
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geometry distortions (e.g. the blue patch in Fig. 4(a)) destroy
the assumption of local image similarity; that is, the above-
described relationship established via equation (1) does not
exist anymore, and thus the error difference in the geome-
try distorted area suddenly increases compared with typical
smooth, edge and textural patches in natural images mentioned
above. This phenomenon can be validly used for judging the
quality of a DIBR-synthesized image.

Based on the observations and analyses above, we propose
to use the AR model to predict the input DIBR-synthesized
image and thus attain the error difference map. Some simple
modifications should be made to refine the computed error
difference map. To be more specific, we first “clean” the error
map with a Gaussian filter for the purpose of removing some
isolated small “noise”. Then the γ % most salient regions are
detected to be used for excluding the associated parts in the
error map, since these non-geometry distorted areas that are
very likely to have large-valued error differences should be left
aside. We have considered several recently proposed saliency
detection methods [36]–[39], the FES model in [36] is selected
due to its better performance. Influences of using different
saliency detection techniques on correlateion performance will
be compared in the experimental results. Lastly, we binarize
the filtered error map with a threshold to generate a “0-1” map:

Md =
{

1, if Me < ϒt

0, otherwise
(4)

where Me means the error map processed by the Gaussian
filter; ϒt is a constant threshold. We further apply the median
filter to process Md for burrs removal.

Our next consideration focuses on pooling the binary map
Md generated based on equation (4) to get the final quality
score. The majority of existing IQA metrics were developed
based on the NSS model. Some FR-IQA methods compare
the difference of structural variations of a distorted image
and its associated reference (natural) image. RR-IQA metrics
extract RR feature vectors from the reference (natural) and
contaminated images followed by measuring the distance of
two vectors containing RR features. In NR-IQA models, one
certain statistic regulation derived from natural images, and the
quality of the distorted image is estimated based on its devia-
tion from the aforesaid natural statistic regulation. So, it is
a reliable way to assess image quality by comparing the
distance of a corrupted image and its associated natural image
in structural, RR vector or statistic domains. Note that, using
equation (4), the small values in the error difference map Me

are assigned as the unit, which are associated to the natural
image parts. In comparison, those large values corresponding
to geometry distorted regions are set as zero. This means
that the values in the binary map Md of a distortion-free
natural image should be all one. We can compare Md with
the binary map of natural images Mr to predict the quality
of a DIBR-synthesized image. The procedures defined in
equations (1)-(4) can be perceived as a new NSS regulation
in an “AR-plus-thresholding” domain.

Our goal is to find out how much the binary map of image
with geometric distortions Md differs with the binary map

of the natural image Mr . With this view, we use a reference
map Mr which has the same size with Md . The binary map of
reference Mr can be produced by applying equations (1)-(4)
to the natural images. Then, similar to the frequently used
similarity measure, which has three merits such as symmetry,
boundedness and unique maximum [3], we define the quality
measure of the distorted DIBR-synthesized image by

Qs = 1

L

L∑
l=1

(
2Md (l) · Mr (l) + ε

Md (l)2 + Mr (l)2 + ε

)α

(5)

where l is the pixel index; L indicates the number of the
pixels in image; ε is a constant number which is very small
for avoiding the problem of division-by-zero; α is a positive
exponent that is associated to the Minkowski summation. More
emphasis is generally shifted to the low-quality regions with α
increased. This sounds reasonable since more human attentions
are absorbed by one kind of small region, in which most
distortions are included [4]. Typical value of α is from 1 to 4.
In fact, state-of-the-art FR methods deploy different pooling
schemes to highlight high distortion regions [9]–[11].

We assume that all the values in the binary reference
map Mr are the unit, as geometric distortions in natural images
do not occur and the value of residual errors is lower than the
threshold, as shown in Figs. 4(b)-(d). So, equation (5) can be
rewritten as

Qs = 1

L

L∑
l=1

(
2Md (l) + ε

Md (l)2 + 1 + ε

)α

. (6)

From this equation, it can be found that in the denominator,
the term Md (l)2 ≥ 0 and thereby Md (l)2 + 1 ≥ 1, which
indicates that the denominator cannot be zero. Thus, we can
remove the small variable ε in equation (6) and rewrite it to be

Qs = 1

L

L∑
l=1

(
2Md (l)

Md (l)2 + 1

)α

= 1

L

∑
l∈L0

(
2Md (l)

Md (l)2 + 1

)α

︸ ︷︷ ︸
(I) Geometric distorted regions

+ 1

L

∑
l∈L1

(
2Md (l)

Md (l)2 + 1

)α

︸ ︷︷ ︸
(II) Non-geometric distorted regions

(7)

where L0 and L1 are respectively associated to the regions
in which all the values are zero and one, and L = L0 + L1.
In other words, it can be said that, in a DIBR-synthesized
image, L0 and L1 respectively stand for the region which
has geometric distortion and the region which do not have
geometric distortion. Therefore, we can simplify equation (7)
when α is positive:

Qs = 1

L

∑
l∈L0

(
2 · 0
0 + 1

)α

+ 1

L

∑
l∈L1

(
2 · 1

1 + 1

)α

= L1

L
. (8)

The Minkowski pooling has no influence on the final quality
estimation, and therefor we can remove the exponent α from
equation (8).
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Fig. 5. Block diagram of the proposed blind APT metric.

The quality score, i.e. the similarity between the binary
maps of a distorted DIBR-synthesized image and natural
images, can be readily solved as the ratio of the number
of one-value pixels to the overall map size (i.e. the ratio of
number of pixels in non-geometry distorted regions and the
total number of pixels in a DIBR-synthesized image). From
equation (8), we can see that a DIBR-synthesized image has a
higher quality when the score Qs is close to one. For such
images, most of the values in the binary synthesized map
Md are one and consequently, the corresponding image has
less amount of geometric distortions (pixels in L0 regions).
From equation (8), it can be also perceived that the score Qs

does not depend on any information about the reference image,
so our proposed algorithm is completely blind/referenceless.
We further show a block diagram of the proposed blind APT
metric in Fig. 5 for improving the readability of this paper.

III. EXPERIMENTAL RESULTS

In this research, we devise a valid local image descrip-
tion based blind quality assessment metric, specifically to
match the characteristics of the DIBR-synthesized images.
In order to check the efficacy of the proposed algorithm,
we apply it on the IRCCyN/IVC database [2] dedicated to the
DIBR-synthesized images. This database is composed of
the total 96 images, in which 12 are original images and
the remaining 84 images are associated to synthesized views.
The 84 DIBR-synthesized views are predominantly corrupted
due to the presence of geometric distortions and used for
performance validation.

A. Competing IQA Metrics and Evaluation Methodology

We have compared the proposed algorithm with recently
developed quality assessment methods based on the various
phenomena. We have divided existing IQA models used for
the comparison in two categories. In the first category, we have
included IQA metrics which were designed for natural images.
The second category is composed of the IQA models which
were designed to match the characteristics of the DIBR-
synthesized images. The IQA methods in the first category
include full-reference algorithms (such as, PSNR, SSIM [3],
Visual Signal-to-Noise Ratio [40], Most Apparent Distor-
tion (MAD) [41], IW-SSIM [4], Feature SIMilarity (FSIM) [9],
ADD-SSIM [5], Perceptual SIMilarity (PSIM) [11]), reduced-
reference algorithms (such as, Reduced-Reference Entropic
Differencing (RRED) [42], Free Energy based Distortion

Metric (FEDM) [7], Fourier Transform based Quality Mea-
sure (FTQM) [43], Orientation Selectivity based Visual
Pattern (OSVP) [44]), and referenceless algorithms (such
as, NIQE [16], Quality-Aware Clustering (QAC) [45],
IL-NIQE [17], SIx-Step BLInd Metric (SISBLIM) [18]).

On the other hand, we have also compared the proposed
referenceless quality assessment algorithm with existing
full reference algorithms designed for DIBR-synthesized
images (in the second category), such as, VSQA [26],
3D-SWIM [27], MW-PSNR [28], MP-PSNR [29], and
MP-PSNR-reduc [31]. To the best of our knowledge, no blind
quality assessment algorithm of DIBR-synthesized views has
been proposed in the literature. In this paper, we do not
compared the proposed algorithm with those learning-based
IQA algorithms, since the IRCCyN/IVC database contains
only 96 images and insufficient training data are very likely
to make those learning-based model to be susceptible to the
bias.

For the purpose of performance evaluation, we have used
four widely employed criteria, namely Pearson Linear Cor-
relation Coefficient (PLCC), Spearman Rank order Correla-
tion Coefficient (SRCC), Kendall’s Rank-order Correlation
Coefficient (KRCC), and Root Mean Square Error (RMSE).
PLCC and RMSE are deployed to measure the prediction
accuracy, while SRCC and KRCC are used to find the
monotonicity of the prediction. A better quality assessment
algorithm should attain a higher value of PLCC, SRCC, and
KRCC, while achieve a lower value of RMSE. It needs to
reduce the nonlinearity of objective prediction scores before
conducting these four correlation measures. So the objective
prediction scores are mapped to subjective human ratings
using the following five parameter nonlinear logistic function
beforehand:

f (Qs) = κ1

(
0.5 − 1

1 + eκ2(Qs−κ3)

)
+ κ4 Qs + κ5 (9)

where Qs and f (Qs) represent the predicted scores using
the IQA methods and its corresponding mapped scores.
κi (i ∈ 1, 2, 3, 4, 5) are the parameters which are needed to
be fitted during the nonlinear regression. Then we compute
those four correlation criteria using the converted objective
predictions f (Qs) and subjective quality scores.

B. Performance Comparison

In Table I, the comparison results of the proposed APT
metric with existing IQA algorithms (both the first and second
categories are presented. The proposed algorithm achieves
0.7307, 0.7157, 0.5766, and 0.4546 of PLCC, SRCC, KRCC,
and RMSE, respectively, which is much better than those
competing IQA methods. From Table I, we are able to derive
two important conclusions:

1) Those existing IQA algorithms that were designed for
natural images (in the first category) are unable to
perform effectively. The MAD algorithm [41] performs
the best among FR IQA methods tested and it obtains
0.6667, 0.5603, 0.4077, and 0.4963 of PLCC, SRCC,
KRCC, and RMSE, respectively. Across eight RR and
NR IQA metrics, the FTQM and SISBLIM methods
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TABLE I

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM WITH RECENTLY DEVELOPED METRICS (QUALITY ASSESSMENT METRICS
FOR BOTH IMAGES AND DIBR). THE BEST PERFORMANCE IN EACH TYPE IS HIGHLIGHTED WITH THE BOLD-FACES

separately lead to the optimal results in their personal
types, more than 0.5 of PLCC. These simulation results
confirm our claim that those existing algorithms in the
first category cannot catch the geometric distortions,
which are the predominant artifacts contained in the
DIBR-synthesized images.

2) Despite the fact that the IQA methods designed for
the DIBR-synthesized images (in the second category)
implement better than those designed for natural images
while the performance indices of those algorithms are
not sufficient yet. For example, the MP-PSNR-reduc
metric performs the best among the IQA models
designed for DIBR-synthesized views and it attains
0.6772 of PLCC, which is still smaller than the PLCC
value obtained by our proposed blind APT algorithm.
And furthermore, in those IQA approaches, it requires
the complete information about the reference synthe-
sized views, which are generally not accessible in most
real application scenarios.

Overall, the proposed APT metric is completely referenceless
and it can achieve much higher value of PLCC, SRCC, and
KRCC and lower value of RMSE as compared with the
IQA algorithms considered.

Moreover, we used 6 parts of the IRCCyN/IVC database to
examine the influence of certain DIBR algorithms, i.e. A2-A7,
on the performance of our APT metric. Table II illustrates the
results and points out that APT has achieved high correlation
with subjective ratings for the frames synthesized by the
algorithms A3, A4, A5 and A7. But simultaneously, it was also

TABLE II

RANK AND PLCC OF DIBR ALGORITHMS A2-A7

found that the performance for A2 and A6 is not good. This
phenomenon is very possibly due to the reason that few highly
obvious geometry distorted regions are included in the frames
synthesized by the algorithms A2 and A6, and thus our APT
metric mistakes those frames for high-quality natural images
and results in the poor correlation performance, as shown
in Table II. In reality, our APT metric is good at predicting
poor-quality 3D-synthesized views which are corrupted by
obvious geometry distortions. As for assessing high-quality
3D-synthesized views which are quite close to natural images,
the MP-PSNR model with the ability to discern small differ-
ences between the reference and synthesized images has better
performance than our proposed blind APT metric. So, our
further work will be devoted to developing new NSS models
specific to this IQA task for promoting the performance of
our APT method. It deserves attention that, despite the poor
results for A2 and A6, the proposed APT metric works
without reference, while, the MP-PSNR is reference-based,
and thus the blind APT algorithm can be thought of as a good
DIBR-synthesized IQA model. Furthermore, as provided in
Section III-D later, the APT metric can be also considered as
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Fig. 6. Scatter plots of MOS versus FR models (SSIM, MAD and ADD-SSIM), RR models (RRED, FEDM and FTQM), NR models (NIQE, SISBLIM
and IL-NIQE), and models designed for DIBR-synthesized views (MW-PSNR, MP-PSNR and our proposed APT) on the IRCCyN/IVC database. The black
diagonal dash line means the perfect prediction.

a feature to be incorporated into state-of-the-art FR methods,
such as MP-PSNR, towards higher performance.

In Fig. 6, using the IRCCyN/IVC database, we provide
the scatter plots of subjective MOS values versus objectives
quality estimations derived by different IQA metrics, which
include: 1) FR SSIM, MAD and ADD-SSIM; 2) RR RRED,
FEDM and FTQM; 3) NR NIQE, SISBLIM and IL-NIQE;
4) DIBR-relevant MW-PSNR, MP-PSNR and our proposed
APT. It is apparent that, as compared with competitors,
the sample points of the proposed algorithm present higher
convergence and linearity, which means that our APT model
can deliver more consistent objective scores in line with the
subjective ratings.

C. Performance Dependency of Used Parameters
A robust quality assessment model is more desired; that

is, a good IQA metric refers to a metric whose performance
should not vary significantly with the slight change of the
parameters. Let us first discuss the influence of the threshold
ϒt used in equation (4) on the performance. Seeing Fig. 4(e),
the error difference pixels belonging to the geometric distorted
regions have very large values. Any higher value of threshold
can be used to distinguish between the pixels in natural image
patches and those corrupted by geometric distortions, and this
can be used for highlighting those geometric distorted pixels.
As thus, we have examined the dependency of the proposed
algorithm on the threshold ϒt and provided the result in Fig. 7.
From this figure, we can perceive two observations below.

1) Even with a large range of variation of the threshold ϒt ,
the performance of the proposed APT metric does not
change significantly. Its worst performance (0.6301 and

0.5345) is still better than the majority of state-of-the-art
IQA metrics tested. The worst performance of the pro-
posed algorithm has achieved the 0.6396 of PLCC.

2) It was found that, when the threshold ϒt varies in a
comparative large interval (from 30 to 110), the values
of PLCC and SRCC are greater than 0.6841 and 0.6236,
respectively. By comparing these results with those
reported in Table I, one can see that even the lowest
performance (0.6841 and 0.6236) is still superior to the
overall testing IQA models, regardless of using refer-
ence information or not and designed for monoscopic
views or DIBR-synthesized views.

In the proposed algorithm, we have fixed ϒt value to be 100,
based upon the experiment above. It is also interesting to
notice that some existing algorithms based upon the free
energy theory [6], [7] (AR modeling) perform poorly for the
quality assessment of DIBR-synthesized images, whereas the
proposed APT metric based on the AR modeling followed by
the thresholding implement very effectively. These simulation
results demonstrate the superiority of the proposed new NSS
model, namely “AR-plus-thresholding”, for blindly assessing
the quality of DIBR-synthesized views.

Subsequently, we will discuss the influence of the ratio γ %
on the performance. This parameter decides the regions to
be excluded in the error map. As shown in Fig. 8, we have
presented the result to examine the performance dependency
of the proposed APT metric on the ratio γ %. According to
the two curves in the figure, we are able to derive three
conclusions below.

1) We compare the correlation performance of the proposed
APT model in a large interval of the ratio γ % (from
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Fig. 7. Performance dependency of the proposed APT metric with the
changing thresholds (ϒt ).

Fig. 8. Performance dependency of the proposed APT metric with the
changing ratios (γ %).

0 to 50). The result illustrates the robustness of our
APT metric, only with a small fluctuations. The lowest
performance scores are 0.5864 and 6055 of PLCC and
SRCC, even superior to most popular and recently
proposed quality methods.

2) If we focus our attention on the performance variations
in the range of the ratio γ % from 0 to 25, it can be
found that, in such situation, all the PLCC and SRCC
values are greater than 0.6871 and 0.6419, respectively.
This means that, in a comparative large range, our
proposed APT algorithm outperforms all the competing
quality metrics, even though some metrics were designed
for DIBR-synthesized views and using the complete
reference information.

3) It has to be emphasized that the performance scores
at γ = 0 are associated to the APT metric without
using any saliency detection model, which is named
APTns . At this time, the values of PLCC and SRCC are
0.7213 and 0.6885. Comparing these two values with
state-of-the-art metrics, as shown in Table I, the APTns

delivers a considerable high performance, much better
than the competitors.

Eventually, we examine the influence of different θ values
on the correlation performance. In the proposed APT metric,
θ is set to be 8 since we only consider the local patch which
include the most adjacent 8 pixels, i.e. 1-distance pixels. Here
we further examine n-distance pixels, where n = {2, 3, 4, 5},
and accordingly θ = {24, 48, 80, 120}. The performance and
implementation cost are compared, as illustrated in Table III.
One can see that, in general, the performance indices decrease

TABLE III

INFLUENCE OF DIFFERENT θ VALUES ON PERFORMANCE

TABLE IV

PERFORMANCE OF IMPROVED FR IQA MODELS FOR DIBR-SYNTHESIZED
VIEWS BY COMBINING OUR BLIND APT METRIC

with θ increased. In the meantime, the implementation time
(in terms of minute) promptly grows yet. Moreover, we also
check θ = 4 since 4 connected neighborhood is used fre-
quently, and results can be found in Table III. Similarly, our
proposed blind APT metric has achieved better performance
in comparison. So, in our blind APT metric, we assign θ and
n as 8 and 1.

D. Improving Full-Reference DIBR-Synthesized IQA Models

Actually, FR IQA metrics might be improved by includ-
ing part or all of features (e.g. NSS-based features) used
in NR models [22]. So we have also examined whether
the proposed APT measure can serve as a feature to
improve existing FR IQA algorithms which were designed for
DIBR-synthesized views. We define the improved metric Qi as

Qi = Qs ∗ Qβ
f (10)

where Qs and Q f are predicted quality scores derived by
using our APT model and a FR model for DIBR-synthesized
IQA, and β is a weighting parameter to adjust the relative
importance between Qs and Q f . In this paper, we consider
two recently proposed FR IQA metrics for DIBR-synthesized
views, namely MW-PSNR [28] and MP-PSNR [29]. The
parameter β is an empirically selected constant for attaining
greater performance on the IRCCyN/IVC database. Table IV
summarizes the performance results of the improved metrics
and the associated relative gains on the IRCCyN/IVC database.
As seen, Gain I indicates the performance gain of improved
metric relative to its original version, while Gain II indicates
the performance gain of improved metric relative to our
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Fig. 9. Influence of inpainting techniques on our APT algorithm.

proposed APT metric. It can be observed that, as compared
with the original MW-PSNR (or MP-PSNR), incorporating
the novel APT metric constantly introduces a high level of
performance improvements with respect to its original version.
Even compared with our APT metric, the improved metrics
are always leading to a remarkable performance gain. The
above phenomenon can be explained by the fact that the
design philosophy behind the proposed APT metric is based
on a new NSS model, different from existing IQA models for
DIBR-synthesized views.

E. Discussions

In comparison to existing studies, there include some spot-
lights in our work. First, based on AR-based local image
description, we have proposed a new NSS model which can
capture the geometric distortion appeared in DIBR-synthesized
images. Second, to our best knowledge, this work is the
first NR IQA model designed for DIBR-synthesized views,
which has achieved superior performance as compared with
state-of-the-art IQA models. Third, our proposed APT metric
is a quite robust algorithm, not sensitive to the parameters
used in it. Fourth, by incorporating our APT metric, we can
improve existing FR methods for DIBR-synthesized IQA to a
large extent. Fifth, the saliency detection can be regarded as an
optional step of our APT metric towards faster implementation
since only a small performance decrease will be introduced
after removal of saliency detection model, i.e. γ = 0.

However, in terms of computational cost, the APT metric
consumes around 2.77 minutes for one 768 × 1024 DIBR-
synthesized image, whereas the MW-PSNR and MP-PSNR
only require about 1.21 and 0.0823 seconds. Finally,
we also analyze the impact of using inpainting techniques
on the performance of our APT metric. As displayed
in Fig. 9, (a) and (b) represent two DIBR-synthesized images,
respectively without and with hole-filling techniques, and
(c) is the associated reference natural image. As for the
labelled white patch, we provide the histograms of their
error maps at the top right corner, akin to Figs. 4(b)-(d).
Comparing (a) and (b), it was found that, by means of the
inpainting technique, the performance of our APT metric is
influenced. Specifically, the histogram’s tail reduces and thus
it cannot be used to validly catch the distortion. In con-
trast, we also compare (b) and (c). The labelled white patch
in (b) includes an annoying bended edge, while that in (c)
includes a natural edge. One can see that, despite not obvious
evidence, the annoying-bended-edge patch has longer tail than
the natural-edge patch.

IV. CONCLUSIONS

The 3-D synthesized views are the backbone of free-view
point videos (FVV), virtual reality (VR), and augmented
reality (AR), and mixed reality (MR). In the literature,
several algorithms were proposed to generate the 3-D syn-
thesized view but referenceless quality assessment met-
rics are missing. The referenceless metrics are essentially
required to evaluate and monitor the synthesized views,
as reference synthesized views are generally not available.
With this view, in this work, we have proposed an effec-
tive and first referenceless quality assessment algorithm for
DIBR-synthesized views using the proposed new natural scene
statistics (NSS) model called as “AR plus threshold”. The
residual error between a DIBR-synthesized image and it’s
reconstructed image using the AR-modeling can validly cap-
ture the geometry distortions. The visual saliency is then
leveraged to modify the proposed blind quality metric to a
sizable margin. Experiments validate the superiority of our
no-reference quality method as compared with prevail-
ing existing full-, reduced-, and no-reference approaches,
which includes both type of algorithms specifically designed
for the natural and DIBR-synthesized images. The code
will be released at https://sites.google.com/site/guke198701/
publications.
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